Dynamic Activity of miR-125b and miR-93 during Murine Neural Stem Cell Differentiation In Vitro and in the Subventricular Zone Neurogenic Niche

نویسندگان

  • Annalisa Lattanzi
  • Bernhard Gentner
  • Daniela Corno
  • Tiziano Di Tomaso
  • Pieter Mestdagh
  • Frank Speleman
  • Luigi Naldini
  • Angela Gritti
چکیده

Several microRNAs (miRNAs) that are either specifically enriched or highly expressed in neurons and glia have been described, but the identification of miRNAs modulating neural stem cell (NSC) biology remains elusive. In this study, we exploited high throughput miRNA expression profiling to identify candidate miRNAs enriched in NSC/early progenitors derived from the murine subventricular zone (SVZ). Then, we used lentiviral miRNA sensor vectors (LV.miRT) to monitor the activity of shortlisted miRNAs with cellular and temporal resolution during NSC differentiation, taking advantage of in vitro and in vivo models that recapitulate physiological neurogenesis and gliogenesis and using known neuronal- and glial-specific miRNAs as reference. The LV.miRT platform allowed us monitoring endogenous miRNA activity in low represented cell populations within a bulk culture or within the complexity of CNS tissue, with high sensitivity and specificity. In this way we validated and extended previous results on the neuronal-specific miR-124 and the astroglial-specific miR-23a. Importantly, we describe for the first time a cell type- and differentiation stage-specific modulation of miR-93 and miR-125b in SVZ-derived NSC cultures and in the SVZ neurogenic niche in vivo, suggesting key roles of these miRNAs in regulating NSC function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat

Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes.  Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...

متن کامل

Nogo receptor blockade enhances subventricular zone’s stem cells proliferation and differentiation in demyelination context

Introduction: Nogo-A and Nogo receptor (NgR) are expressed in the subventricular zone (SVZ) stem cells. NgR plays critical inhibitory roles in axonal regeneration and remyelination. However, the role of NgR in SVZ niche behaviors in demyelination context is still uncertain. Here we investigated the effects of NgR inhibition on SVZ niche reaction in a local model of demyelination in adult mouse ...

متن کامل

Mimicking Neural Stem Cell Niche by Biocompatible Substrates

Neural stem cells (NSCs) participate in the maintenance, repair, and regeneration of the central nervous system. During development, the primary NSCs are distributed along the ventricular zone of the neural tube, while, in adults, NSCs are mainly restricted to the subependymal layer of the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus in the hippoca...

متن کامل

SVCT2 vitamin C transporter expression in progenitor cells of the postnatal neurogenic niche

Known as a critical antioxidant, recent studies suggest that vitamin C plays an important role in stem cell generation, proliferation and differentiation. Vitamin C also enhances neural differentiation during cerebral development, a function that has not been studied in brain precursor cells. We observed that the rat neurogenic niche is structurally organized at day 15 of postnatal development,...

متن کامل

Estrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro

Objective(s):Estrogen is a sexual hormone that has prominent effects on reproductive and non-reproductive tissues. The aim of this study is to evaluate the effects of estrogen on the proliferation and neural differentiation of human adipose derived stem cells (ADSCs) during neurogenic differentiation. Materials and Methods: Isolated human ADSCs were trans-differentiated in neural induction med...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013